Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rastogi, V_K (Ed.)QBism regards quantum mechanics as an addition to probability theory. The addition provides an extra normative rule for decision-making agents concerned with gambling across experimental contexts, somewhat in analogy to the double-slit experiment. This establishes the meaning of the Born Rule from a QBist perspective. Moreover it suggests that the best way to formulate the Born Rule for foundational discussions is with respect to an informationally complete reference device. Recent work [DeBrota, Fuchs, and Stacey, Phys. Rev. Res. 2, 013074 (2020)] has demonstrated that reference devices employing symmetric informationally complete POVMs (or SICs) achieve a minimal quantumness: They witness the irreducible difference between classical and quantum. In this paper, we attempt to answer the analogous question for real-vector-space quantum theory. While standard quantum mechanics seems to allow SICs to exist in all finite dimensions, in the case of quantum theory over the real numbers it is known that SICs do not exist in most dimensions. We therefore attempt to identify the optimal reference device in the first real dimension without a SIC (i.e., d=4) in hopes of better understanding the essential role of complex numbers in quantum mechanics. In contrast to their complex counterparts, the expressions that result in a QBist understanding of real-vector-space quantum theory are surprisingly complex.more » « less
- 
            The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ~30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.more » « less
- 
            The IceCube Neutrino Observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged detector, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide improved prospects for detecting fainter sources. IceCube-Gen2 is planned to have an extended in-ice optical array, a radio array at shallower depths for detecting ultra-high-energy (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ~120 new detection strings to the existing 86 in IceCube over ~7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available